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ABSTRACT

A two-layer quasi-geostrophic model forced by surface friction and radiative relaxation to a jetlike wind
profile can exist in either a wave-free state or in a finite-amplitude wave state, over a substantial region of the
model’s parameter space. The friction on the lower layer must be much stronger than the thermal relaxation,
and the upper layer must be nearly inviscid, for this behavior to be observed.

Consistent with this behavior, weakly unstable waves are found that do not stabilize the flow; instead, their
growth rate increases with wave amplitude, We attempt to provide a physical explanation for this behavior in
terms of 1) the competition between the stabilizing effect of the lower-layer potential vorticity fluxes and the
destabilizing effect of nonlinear critical layer formation associated with the upper-layer fluxes, and 2) the tendency
of surface drag to restore the vertical shear at the center of the jet by damping the surface westerlies generated

by the baroclinic instability.

1. Introduction

The two-layer quasi-geostrophic model has long been
recognized as a very useful tool for the study of finite-
amplitude baroclinic instability (Phillips 1956; Ped-
losky 1970; Williams 1979), but many aspects of its
dynamics have yet to be explored. We have examined
the statistically steady states of a model that is forced
by thermal relaxation to a zonally symmetric “radiative
equilibrium” temperature profile in thermal wind bal-
ance with a jetlike wind field, and in which the only
other dissipative mechanisms are a linear drag on the
lower layer wind and scale-selective (biharmonic) dif-
fusion. We focus in particular on the existence in this
model of “subcritical instability.” For a certain range
of model parameters, the radiative equilibrium profile
is stable to small disturbances but unstable to large
perturbations. As a result the system can exist either
in a zonally symmetric state or in a state with O(1)
eddy amplitudes. Although results from a two-layer
channel model cannot be assumed to be of direct me-
teorological relevance, they do shed light on the dif-
ferent ways in which baroclinic instabilities can equil-
ibrate. In addition, this result may have implications
for the maintenance of storm tracks in the atmosphere.

A similar hysteresis effect is observed in the rotating
annulus near the transition between the “upper sym-
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metric” and wave regimes (e.g., Fultz 1959) and has
been captured in a truncated spectral model of this
system by Lorenz (1962). However, the upper sym-
metric regime of the annulus owes its existence to the
effect of the meridional circulation on the static sta-
bility, and this has no analogue in the standard two-
layer model with fixed density difference between the
layers. At the transition from the lower symmetric to
the wave regime, where the dynamics is more analogous
to that at the transition to instability in the standard
two layer model, no hysteresis of this sort is found in
the laboratory experiments or Lorenz’s model. Weimer
and Haken (1989) describe a weakly nonlinear analysis
of a two-layer baroclinic model that exhibits subcritical
instability in the very special case in which there are
three weakly unstable modes. Steinsaltz (1988) shows
that subcritical instability occurs in a two-layer model
with a uniformly sloping lower boundary. We do not
believe that either of these models is closely related to
the results we describe below. Using a model similar
to ours, Speranza et al. (1988) present a figure (Fig.
13) which indicates the existence of subcritical insta-
bility but do not discuss this fact in their paper.

2. Model description

The dimensionless equations for our quasi-geo-
strophic two-layer model on a beta-plane are

80/t + J(¥1, Q1)

= xr[ {(¥1 —¥2)/2} — 7.1 — vV (la)
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0Qx/0t + J(¥2, Qo) = —kx[ {(¥1 —¥2)/2} — 7]
- KMV2¢2 - Vvﬁlpz, (lb)

where

Qi =By + VY + (1) —¥2)/2, j=1,2.(2)

and j = 1 and 2 refer to the upper and lower layers
respectively. The velocity field is determined by the
relation, (u;, v;) = (—dy;/dy, d¥;/dx). The horizontal
length scale is the radius of deformation,

A =1[g(p2 — p1)H/(202/6°)]'"%. (3)

Here H is the resting depth of either layer. The re-
mainder of the notation is standard. The dimensional
(primed) quantities corresponding to those in (2.1)
are

(8, k7, kM, V')
= [BUo/ X2, krX/ Us, k)] U, »/(Uoh*)],

where U is the velocity scale. The time is nondimen-
sionalized by X/ Uj,.

Ekman damping () is included in the lower layer
only. The “radiative equilibrium temperature,” 7.(y),
is chosen so as to balance a Gaussian zonal wind shear:

Ue=—20r./0y = CXP[_yZ/Uz]- (4)

Ignoring the small effect of the biharmonic diffusion,
a zonally symmetric solution exists with U; = U, and
U, = 0. Thus, the strength of the upper level wind at
the center of the channel in radiative equilibrium can
be thought of as setting the velocity scale. We chose
o2 = 10 for the calculations in this paper to make the
width of the unstable region resemble that in the at-
mosphere. - The channel walls are located at +W/2.
The width Wis chosen to be sufficiently large (W = 21)
that eddy amplitudes are very small near the walls.
The numerical method used to integrate (1) is iden-
tical to that in Feldstein and Held (1989), with spectral
decomposition in the zonal direction and standard
second-order finite differencing meridionally. The bi-
harmonic diffusion terms in (1) represent the enstrophy
cascade toward smaller scale, so the value of » depends
on the resolution of the model; as the resolution of the
model increases, v decreases. The extra boundary con-
ditions required by the biharmonic diffusion are also
chosen as in Feldstein and Held. A thermal relaxation
time scale of 30 days (1 “day” = A/ U,) is reasonable

for the atmosphere, and therefore we hold «t fixed at.

this value unless otherwise stated.

3. Hysteresis and subcritical instability

We first describe results from a model with 16 zonal
wavenumbers (0.1 to 1.6), 70 gridpoints between the
channel walls, and a biharmonic diffusion coeflicient
v = 0.006. The remaining parameters to be varied are
B and ky. The solid line in Fig. 1 shows the time-av-
eraged eddy kinetic energy :
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w
EKE = f dy(i® + ?)/2,
0

(where the overbar refers to the zonal mean and a prime
to the deviation from the zonal mean), for several val-
ues of B, fixing xy = 0.2. The latter value is close to
that typically chosen when trying to mimic the at-
mosphere with a two-layer model. It is more difficult
to choose the most meteorologically relevant values of
B, since the dependence of baroclinic growth rates on
the vertical shear, of which § is a nondimensional
measure, is very different in two-layer and continuous
atmospheres. These solutions are aperiodic for f
< (.25, and become periodic for 8 > 0.25. As described
below, all solutions become chaotic as v is decreased
and the meridional resolution increased. The averaging
period is 1000 model days. The linear stability bound-
ary, obtained by direct numerical integration of a lin-
earized version of the numerical model, is located at
B8 =0.27. For 8 > 0.27, the zonally symmetric state is
stable, and sufficiently small perturbations decay with
time. One might have expected EKE to decrease
smoothly to zero at the linear stability boundary, but
this is not observed. Solutions with substantial wave
amplitude are found up to 8 ~ 0.36. These states are
obtained by first generating the solution in the linearly
unstable region (8 < 0.27) and then slowly increasing
B. Thus, there is a range of 8 for which two states are
possible: a stable zonally symmetric state and a periodic
state with O(1) eddy amplitude.

The zonal spectrum of the states in the vicinity of
the linear stability boundary is dominated by one zonal
wavenumber (0.8 for 8 = 0.2 and 0.7 for 8 < 0.2,
consistent with the linearly most unstable zonal wave-
numbers on the radiative equilibrium flow). One is

EKE

0.4 linear stability boundary
. \I
0.2 —r —r
0.0 0.1 0.2 0.3 04
BETA

FiG. 1. Time-averaged eddy kinetic energy (EKE) as a function
of B. The value of xy is fixed at 0.2. Solid and dashed lines are for
multiwave and one-wave calculations, respectively, with v = 0.006.
The open dots and filled dots are for multiwave and one-wave cal-
culations, respectively, with » = 0.0001. The linear stability boundary
is also indicated.
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therefore tempted to consider a model truncated to
retain only one wave and the zonal mean flow. Such
a wave-mean flow interaction model is, of course,
much more efficient to integrate. The meridional res-
olution is chosen to be identical to that of the multiwave
model, and we choose 0.8 as the single nonzero wave-
number. Use of this one-wave model will be justified
a posteriori. The resulting EKE () is shown by the
dashed line in Fig. 1. In this wave-mean flow inter-
action model, the wave amplitude is aperiodic for 8
< 0.10, periodic for 0.10 < 8 < 0.24, and steady for 8
= 0.24. Although the transition of the wave state in a
one-wave model is different from that in a multiwave
model, due to the truncation, hysteresis is once again
observed for comparable values of 8 (the one-wave
and multiwave models have the same linear stability
boundary), implying that the dynamics underlying this
behavior can be studied in this simpler wave-mean
flow interaction framework.

If one increases the meridional resolution and de-
creases the value of the biharmonic diffusion », ape-
riodic solutions evolve from the steady and periodic
wave amplitude states. We have performed less diffu-
sive (» = 0.0001), high resolution (300 gridpoints be-
tween the channel walls) multiwave and one-wave
model calculations at two points, one in the linearly
unstable region and the other in the linearly stable re-
gion. The open dots in Fig. 1 are obtained from a model
with 20 zonal wavenumbers (0.1 to 2.0) with »
= 0.0001. The filled dots are from the one-wave model.
Hysteresis is still present.

One also observes this same phenomenon when xy
is varied with fixed 8. Figure 2 shows EKE as a function
of ky for 8 = 0. The linear stability boundary in this
case is located at xy = 0.52 for the one wave-model,
and at 0.72 for the multiwave model. (We use k = 0.8
once again in the one-wave model. The multiwave
model first becomes unstable at k = 0.7). Once again,

16
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0.2~ of one-wave model
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EKMAN DAMPING
FIG. 2. Same as Fig. 1, except for EKE as a function of xy with 8

= 0. Note that the linear stability boundaries are different for the
one-wave and multi-wave models in this case.
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there is a substantial range of ) for which a wave-free
state and a state with O(1) wave amplitude both exist.
As in Fig. 1, we show the results from selected inte-
grations with the high resolution multiwave model, the
high-resolution one-wave model, the more diffusive,
lower resolution multiwave model, and lower resolu-
tion one-wave model. As before, all of the states ob-
tained with the more inviscid models with high merid-
ional resolution are aperiodic, while some of the states
of the more diffusive model shown in the figure are
steady wave states.

We take advantage of the simplicity of the solutions
to the more diffusive model (the steady wave solutions
are well resolved with only 70 gridpoints between the
channel walls, and one need not integrate for long pe-
riods to estimate the time-mean statistics) to explore
the parameter space more fully. Using this low reso-
lution one-wave model, we have explored the § — ky
plane, with the result shown in Fig. 3a. The linear sta-
bility boundary is denoted by the dotted line. The thick
solid line marks the hysteresis boundary, beyond which
the wave-free state is the only one found in our time
integrations. The contours in this plot represent the
eddy kinetic energy. The dashed line in the figure marks
the transition from steady to vacillating wave ampli-
tudes. We do not study this transition in detail, since
we know that it is sensitive to the diffusion; the region
of steady states contracts as the meridional resolution
increases and v decreases until it disappears entirely.

The sheet of solutions that results in the hysteresis
illustrated above emerges from the other sheet near
= 0.06, 8 = 0.337. There is a small region near this
point in which two distinct states with nonzero wave
amplitude exist.! Figure 3b shows this region in more
detail, in a three dimensional perspective. As in Fig,
3a, the linear stability boundary is indicated by the
dotted line. The thick solid and dashed lines indicate
the boundary of the upper sheet and the lower sheet
of solutions, respectively. The projection of the bound-
aries of the upper and lower sheet of solutions onto the
zero-EKE surface are denoted by the dashed-dotted

. o . .
lines: the curve x'y" is the projection of the curve Xy
onto the zero-EKE surface; similarly 37 is a projection
of 9z onto this surface. We presume that there are also
unstable solutions which connect the upper and the
lower sheet of solutions.

Figure 4 shows the zonal mean flow and potential
vorticity gradients in the one-wave model at point A,
which is in the linearly stable region in Fig. 3a (xym
= 0.2, 8 = 0.30). The low-level flow has been accel-
erated near the center of the channel, while there is
strong deceleration in the upper layer on the jet mar-
gins. The phase speed of the steady wave is 0.174, so
this deceleration is located close to the wave’s critical
latitudes. At the center of the channel, the upper layer

! See Note added in proof.
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wind is accelerated, and the vertical shear actually in-
creases slightly. The potential vorticity gradient in the
upper layer has been reduced sharply near the critical
latitude on the jet margin (see Fig. 4b). The structure
of the time-averaged zonal mean flow remains quite
similar as the number of zonal waves is increased and
the diffusivity in the model is decreased (not shown).
Nonlinear critical layer dynamics evidently is at least
partly responsible for the unsteadiness found in the
higher resolution models.

The system is clearly very inefhicient at reducing the
vertical shear in the region where the shear is initially
the largest, but the shear is reduced to the north and
south of the jet where the critical latitudes exist. By
stabilizing the regions on each side of the jet, without
stabilizing the flow near the jet center, the eddies have
contributed to their own meridional confinement.

When the low resolution, diffusive wave—mean flow
interaction model evolves into a state with a steady
wave superposed on a steady zonal flow, the wave sat-

FI1G. 3. (a) The contour plot of EKE in 8 — «y plane,
obtained from one-wave model calculations (for »
= 0.006). The contour interval is 0.2. The dashed—-dotted
lines in the upper-left corner of the figure are contours for
small values of EKE; the values of the contours are 0.005,
0.01, 0.02, 0.04, and 0.08, starting from the contour near
the linear stability boundary. The thick solid line marks
the hysteresis boundary, beyond which the wave-free state
is the only solution. The dashed line marks the transition
from steady to vacillating wave amplitudes. (b) A three-
dimensional perspective of the solutions focused on a re-
gion (the box indicated in Fig. 3a) where two distinct states
with non-zero wave amplitude exist (shaded area in Fig.
3a). See text for more description.

EKE

isfies the linear equation for normal mode disturbances
on that flow. It follows that the modified zonal flow
must support a neutral mode with the structure of the
steady wave. All the normal modes of the unmodified
flow at point A are damped. In this sense, the wave
has decreased the stability of the zonal flow.

To illustrate this point further, we examine the initial
evolution of a very small disturbance to the radiative
equilibrium flow at the points B and C in Fig. 3a. The
point B (C) is chosen to represent a weakly nonlinear
state near the stability boundary at which hysteresis is
(not) observed. The low resolution diffusive one-wave
model is used for this purpose. Forcing and dissipation
are retained as in the full model. The flow is weakly
unstable at both points. The initial condition is of suf-
ficiently small amplitude that the normal mode struc-
ture is achieved before the solution becomes nonlinear.
Figure 5 shows the instantaneous growth rate, defined
as d, In(EKE). At point C, the growth rate decreases
with time; at point B it increases in time, in which case
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FIG. 4. (a) Time-averaged zonal mean winds and (b) time-averaged
zonal mean potential vorticity gradients from the one-wave calcu-
lations (with v = 0.006) for 8 = 0.3 and «y = 0.2. The dotted line
is the “‘radiative equilibrium” state.

the wave cannot be expected to equilibrate at a small
amplitude, consistent with Fig. 3a.

Formally, the wave amplitude evolution equation is
expected to be of the form (see Pedlosky 1970 or Wei-
mer and Haken 1989) §,4 = a4 + v} A4)%4 for small
A. Evidently Re(y) changes sign between B and C. If
we move the point B to the other side of the linear
stability boundary, Re(a) will become negative but
Re(vy) will still be positive, and subcritical instability
will exist. While one could try to compute v using
weakly nonlinear theory, it is not clear that such an
analysis would shed any light on why the mean flow
modification due to a weakly unstable mode should
tend to destabilize the flow further. While we are not
satisfied that we have a complete physical explanation
for this result we strongly suspect that it is related to
the mean flow modification near the upper layer critical
latitudes, particularly to the sharp reduction in the po-
tential vorticity gradient, and to the tendency of the
surface friction to regenerate the vertical shear at the
center of the jet.

A small amplitude disturbance incident on a critical
latitude is absorbed, at least partially, if 8,0, > 0. As
the gradient is reduced, the absorption decreases. Per-
fect reflection, with no absorption, occurs if the gradient
vanishes at the critical latitude. By reducing the gradient
near the critical latitudes in the upper layer, the dis-
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turbance is therefore eliminating a sink of wave activity.
The wave has created for itself a “channel” between
the poorly absorbing nonlinear critical layers within
which it is more easily sustained by baroclinic insta-
bility (see Fig. 4b).

One is led to think in terms of a competition, as the
wave grows, between the stabilization due to the re-
duction of the negative potential vorticity gradient in
the lower layer and the destabilization due to this crit-
ical layer effect in the upper layer. This picture helps
explain why the destabilizing effect should become
dominant as the surface damping is increased, as in
Figs. 3a and 3b; the eddies have more difficulty in
modifying the lower-layer potential vorticity gradient
when the lower-layer winds are strongly damped, while
the destabilizing upper-layer fluxes are relatively unaf-
fected by the friction. This dynamics is qualitatively
similar to that in the barotropic initial value problem
of Hou and Farrell (1985), in which a stable zonal
flow is modified by a finite-amplitude wave in such a
way that it can then maintain the wave.

The friction on the zonal mean flow in the lower
layer also has an effect on the subcritical instability.
When the forcing and dissipation are arbitrarily re-
moved from the zonal mean equations, growth rates
are found to decrease with time at B as well as at C,
and there is no longer a subcritical instability near B.
However, if one moves to the right along the linear
stability boundary in Fig. 3a (toward larger «y and
smaller 8), and repeats the initial value calculation,
one again finds a point at which growth rates increase
with time. By damping the low-level zonal mean west-
erlies generated by the baroclinic instability, the surface
drag tends to restore the vertical shear at the center of
the jet, making it harder for the wave to stabilize the
flow, thereby enhancing the subcritical instability. The
effect of the low-level zonal mean drag cannot in itself
account for the hysteresis in the model; it cannot ex-
plain why the mean flow as modified by the instability

d1n (EKE) /ot

.05 1 1 1 |
] 100 200 300 400 500
TIME {(\/Uo)

F1G. 5. The instantaneous growth rate; d, In(EKE). The solid and
dashed lines correspond to points C and B in Fig. 3a, respectively.
The growth rate is nondimensionalized by its initial value.
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(as in Fig. 4) can support a linear neutral mode, while
the unmodified mean flow possesses damped normal
modes only. Both the “critical layer” character of the
mean flow modification of the upper layer and the ten-
dency of the surface drag to sustain the vertical shear
appear to be needed to explain the model’s behavior.

The low resolution, diffusive multiwave model pos-
sesses a very similar subcritical instability. The growth
of the most-unstable zonal wavenumbers begins to in-
crease before other zonal waves begin to grow substan-
tially, helping to justify the qualitative use of the one-
wave model to study the subcritical instability.

When the meridional resolution in the one-wave
model is increased and the diffusivity lowered to the
point that the final state is aperiodic rather than steady,
the initial-value problem for a small disturbance ex-
hibits more complex behavior that we have not fully
analyzed.

We have examined the qualitative behavior of the
one-wave model when linear Ekman damping is in-
cluded in the upper as well as the lower layer. For this
purpose, we set 8 = 0, since the range of Ekman damp-
ing where one can observe hysteresis is relatively large
when 8 = 0 (see Fig. 3a). In these experiments the
mean flow is forced in such a way that (U, = U,; U,
= () is the solution in the absence of eddies (ignoring
the biharmonic diffusion ); in particular, the upper layer
friction is assumed to relax the upper layer flow to
U.(y). This kind of forcing is not relevant to the tro-
posphere, but we utilize it here because it is simpler to
compare models in which the eddy-free mean flows
are identical. When the two Ekman damping rates and
the thermal damping rate are all equal (producing a
linear damping on the potential vorticity ), no hysteresis
between wave-free and wavy states is observed. When
the thermal damping is held fixed at 1/30, no hysteresis

EKE

0.6 0.8 1.0

EKMAN DAMPING

FiG. 6. Time-averaged eddy kinetic energy (EKE) as a function
of «y for several values of ¢ (see text for definition). The numbers
along the lines are the corresponding values of €. The location of the
linear stability boundary for each e is indicated by a vertical line on
each curve.
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is observed once the ratio (¢) of the upper layer to the
lower layer Ekman damping exceeds ~0.1. Figure 6
shows the time-averaged EKE for several values of e
with varying lower-layer Ekman damping («y). Once
again we use the one-wave, low resolution model with
k = 0.8. In the same figure, linear stability boundaries
are also indicated for each e. The region of hysteresis
shrinks as e increases, and finally disappears when e
exceeds 0.1. This result is consistent with the dynamics
outlined above, in that the upper layer flow must be
relatively free to respond to the eddy stresses for the
hysteresis to be present; this requires that both the
thermal damping and the upper layer momentum
damping be small compared to the momentum damp-
ing in the lower layer.

4. Concluding remarks

In a two-layer model for which the mechanical
damping is much weaker in the upper than in the lower
layer, and in which the “radiative equilibrium” state
is jetlike, hysteresis can occur between wave-free states
and states with O(1) eddy energy. One cannot expect
this hysteresis to be directly relevant to the atmosphere.
Even if one accepts the fact that the observed zonal
mean flow may not be far from being stabilized by
strong surface friction (see Farrel 1985; Lin and
Pierrchumbert 1988), the state that the atmosphere
would reach in the absence of eddies would certainly
be very far from stability, not only because of larger
horizontal temperature gradients but, even more so,
because of a much smaller static stability. It is not so
much our choice of parameters in the two-layer model
that prevents the direct meteorological relevance of this
result, but the unphysical way in which the static sta- -
bility is prescribed in this quasi-geostrophic model.

Yet, these results still raise interesting questions
concerning more realistic atmospheric models and the
different ways in which baroclinic instabilities can
equilibrate. Our attempt at explaining the behavior of
the two-layer model involves a competition between
the stabilizing effect of low-level potential vorticity
fluxes and the destabilizing effect of nonlinear critical
layer formation associated with upper level fluxes. The
latter is “destabilizing” in that it prevents the eddy from
decaying barotropically through meridional dispersion.
This may be a common feature in the nonlinear evo-
lution of baroclinic instability on jets. Also playing a
role in the subcritical instability is the tendency of sur-
face drag to restore the vertical shear at the center of
the jet, by damping the surface westerlies generated by
the instability. Combined with the fact that the decel-
eration of the upper layer flow takes place primarily
to the north and south, but not at the center of the jet,
the result is that the system is very inefficient at re-
ducing the vertical shear in the region where this shear
is initially the largest. Such. behavior may be relevant
to the maintenance of storm tracks in the atmosphere.
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Note added in proof. Some of the details in Fig. 3 have been found
to be sensitive to the diffusivity in the model. When » is lowered to
0.0001 in the one-wave model, and the meridional resolution in-
creased, the region where there are two solutions with nonzero EKE
expands somewhat. The lower sheet of solutions is found to exist in
a very narrow region adjacent to the linear stability boundary for
values of «,, as large as 0.35. This region is so narrow that only the
upper sheet of solutions exists at point B in Fig. 3a, but as one moves
even closer to the linear stability boundary, the small amplitude state
eventually appears. It may be that in the limit of infinitesimal dif-
fusivity and infinite resolution, the small amplitude state exists for
all xy, in an extremely narrow region close to the linear stability
boundary. The hysteresis boundary also expands slightly as the dif-
fusivity is lowered. The basic structure shown in Fig.3a remains un-
changed.
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